Introduction to Data Analysis Lesson 5 Data Analysis Process - Case Study 2: Cleaning Column Labels

·

1 min read

Cleaning Column Labels

1. Drop extraneous columns

Drop features that aren't consistent (not present in both datasets) or aren't relevant to our questions. Use pandas' drop function.

Columns to Drop:

  • From 2008 dataset: 'Stnd', 'Underhood ID', 'FE Calc Appr', 'Unadj Cmb MPG'
  • From 2018 dataset: 'Stnd', 'Stnd Description', 'Underhood ID', 'Comb CO2'

2. Rename Columns

  • Change the "Sales Area" column label in the 2008 dataset to "Cert Region" for consistency.
  • Rename all column labels to replace spaces with underscores and convert everything to lowercase. (Underscores can be much easier to work with in Python than spaces. For example, having spaces wouldn't allow you to use df.column_name instead of df['column_name'] to select columns or use query(). Being consistent with lowercase and underscores also helps make column names easy to remember.)

image.png

image.png

df_08.drop(['Stnd', 'Underhood ID', 'FE Calc Appr', 'Unadj Cmb MPG'], axis=1, inplace=True)

image.png

# replace spaces with underscores and lowercase labels for 2008 dataset
df_08.rename(columns=lambda x: x.strip().lower().replace(" ", "_"), inplace=True)

Supporting Materials